

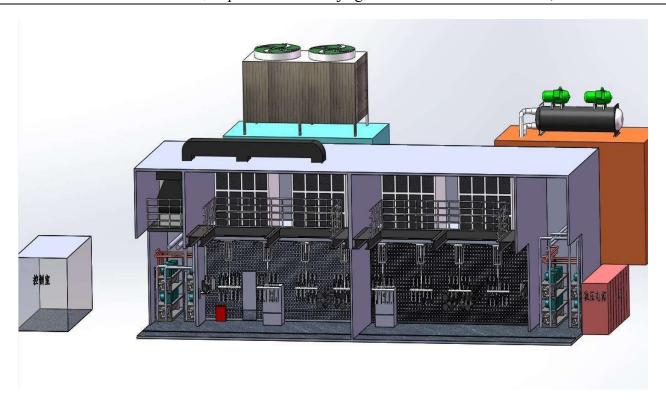
Испытательный стенд для оценки производительности чиллеров с воздушным охлаждением 600RT на базе испытательного центра

Испытательный стенд для оценки производительности чиллеров с воздушным охлаждением 600RT на базе испытательного центра

Содержание

- 1. Испытательный центр 1
- 2. Лаборатория 600RT 2
- 2.1 Испытательная камера 3
- 2.2 Диапазон испытательных мощностей 5
- 2.3 Контроль температуры воды 6
- 2.4 Электропитание 7
- 2.5 Центр управления 7
- 3. Оборудование 9
- 4. Допуск на проведение испытаний 10
- 5. Объем услуг по проведению испытаний 13
- 6. Приложение (пример выполнения оценки) 14

1. Испытательный центр


Лабораторная площадка компании является основой научной мысли, источником технологического развития и базой для технологических исследований. Испытательный центр компании Nanjing TICA Climate Solutions Co., Ltd. основан в 1999 году, занимает площадь приблизительно 15 000 квадратных метров и располагает основным капиталом в размере около 250 миллионов юаней. С 2013 года более 20 лабораторий компании получили первую аттестацию Национальной службы аккредитации по оценке соответствия (CNAS). Для подтверждения эксплуатационных характеристик и надежности устройств в сборе и их компонентов данные лаборатории разделены на четыре этапа: психрометрические измерения, чиллер, очистка, узлы агрегата. В испытательном центре работают более 120 инженеров и тестировщиков, свыше 40% из них имеют степень бакалавра или выше.

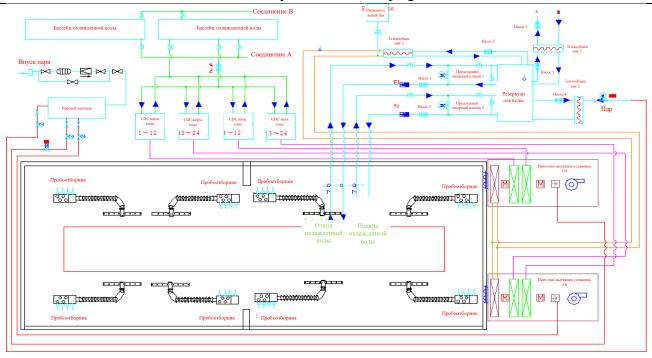
2. Лаборатория 600RT

Основными составляющими испытательного стенда для проверки эффективности чиллера (теплового насоса) с воздушным охлаждением 600RT являются две наружные испытательные камеры, центр управления и зона размещения оборудования. Площадь каждой испытательной камеры составляет около 135 м². Лаборатория позволяет проводить точные измерения холодопроизводительности/теплопроизводительности, потребляемой мощности, температуры воды на входе и выходе агрегата, разницы давления воды на входе и выходе агрегата, расхода воды в агрегате и других параметров. Измеренные значения собираются, обрабатываются и архивируются компьютером, который может автоматически распечатывать протоколы испытаний и анализировать результаты экспериментов и данные испытаний.

В лаборатории можно проводить не только испытания в соответствии с национальными стандартами, но и различные нестандартные эксперименты. Лаборатория также позволяет проводить динамические и специальные проверки эффективности, а также регистрировать эксплуатационные характеристики агрегата.

2.1 Испытательная камера

Стеновая конструкция лаборатории главным образом выполнена с использованием полиуретановых теплоизоляционных сэндвичпанелей. В лаборатории можно проводить испытания агрегатов со следующими максимальными габаритными размерами:


Камера А+В: 14,4*2,85*2,95 м (Д*Ш*В)

Камера В: 8,5*3,7*3,8 м (Д*Ш*В)

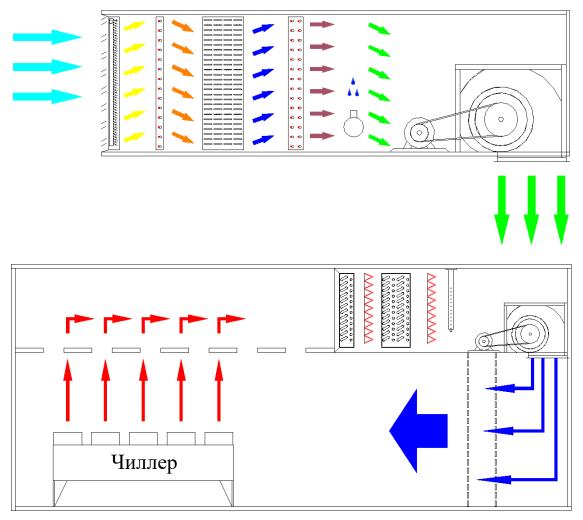
Для оценки производительности в лаборатории компании применяется метод жидкого хладагента, который заключается в использовании платинового терморезистора для определения разницы температур (ΔT) между входом и выходом агрегата, а также электромагнитного расходомера для измерения массового расхода (м), проходящего через агрегат. Такой метод позволяет рассчитать холодо- (тепло-) производительность (Q) агрегата по формуле Q = $Cm\Delta T$.

5 основных составляющих испытательного оборудования: камера с адиабатической системой, устройство повторной очистки воздуха, устройство отбора проб воздуха, устройство приема и смешивания воздуха и система электрического управления. Устройство повторной очистки воздуха обеспечивает необходимые условия окружающей среды в испытательной камере, включая оборудование для охлаждения, осущения, увлажнения, обогрева и циркуляции воздуха. Устройство отбора проб воздуха используется для отбора проб и измерения температуры воздуха и температуры по влажному термометру.

Испытательный центр компании Nanjing TICA

Точная регулировка температуры и влажности в лаборатории обеспечивается в основном за счет совместной работы вентиляционных установок, компрессорноконденсаторных блоков, нагревателей, увлажнителей и другого оборудования. Конфигурация и функции основного оборудования:

1) Компрессорно-конденсаторный блок главным образом состоит из компрессоров, конденсаторов, расширительных терморегулирующих клапанов, газожидкостных сепараторов, маслоотделителей и других холодильных компонентов. Для обеспечения охлаждения лаборатории он подключен к



испарительным теплообменникам внутри вентиляционной установки. Возможны два исполнения компрессорно-конденсаторного блока: с воздушным и водяным охлаждением. Для исполнения с водяным охлаждением требуется градирня и охлаждающий насос, в лаборатории по умолчанию используется вариант с водяным охлаждением.

2)Основными компонентами вентиляционной установки являются сетчатый фильтр, теплообменник с поверхностным охлаждением, теплообменник охлаждения/испарения, нагреватель, форсунки адиабатического увлажения, перепускной воздушный клапан, приточный вентилятор и т. д. Каждая установка оснащена пробоотборником воздуха, автономно контролирующим температуру и

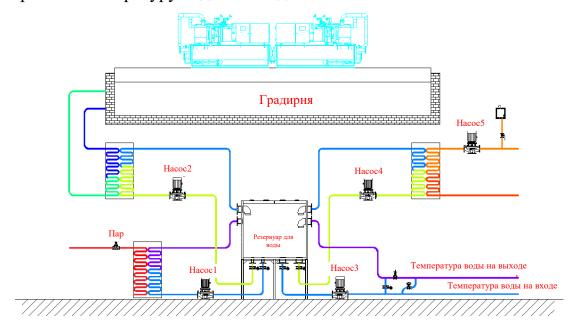
влажность. Во время испытаний тепло, вырабатываемое на воздушной стороне агрегата, и холод, вырабатываемый на водяной стороне, нейтрализуются с помощью устройства рекуперации энергии. При этом для подачи тепла используется электрический обогрев, а для подачи холода - холодильная установка, что позволяет обеспечить заданные эксплуатационные условия и передать их на участок, где расположена испытательная машина. Данный цикл повторяется.

3)Паровой увлажнитель воздуха в основном состоит из редукционных клапанов, вентилей, предохранительных клапанов, паровых цилиндров и т. д. Для обеспечения увлажнения воздуха в лаборатории он подключен к трубке системы увлажнения с распылением внутри вентиляционной установки.

2.2 Диапазон испытательных мощностей

Температура окружающего воздуха: $-25\sim55$ °C (при отсутствии нагрузки на испытательную машину). Диапазон температур охлажденной воды на входе: $5\sim45$ °C.

Диапазон температур охлаждающей воды на входе: 5~45 °C.


Диапазон возможных значений других параметров приведен в таблице ниже:

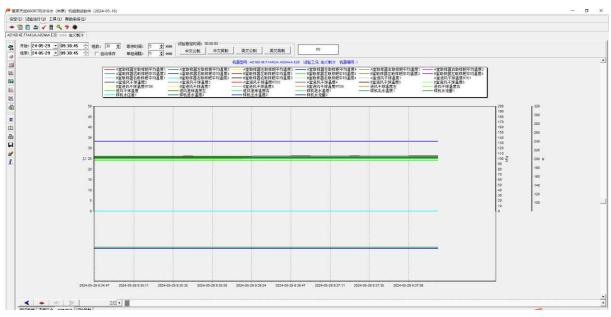
Испытываемый параметр		Технические требования
Холодопроизводительность (теплопроизводительность)	кВт	210~2100
Холодопроизводител ьность при низкой температуре	кВт	150~1050
Расход хладагента	м ³ /ч	36~380
Объем циркулирующего воздуха	M^3/q	132000~600000
Номинальный ток	A	0~1000
Электропитание		50 Гц/60 Гц 300∼520 В
Максимальные размеры чиллера с воздушным охлаждением с компрессорами на магнитных	М	14,40*2,85*2,95 (Д*Ш*В)
подшипниках		
Максимальные размеры непрямого испарительного охладителя (IDEC)	М	6,5*3,2*3,8 (Д*Ш*В)
AHRI		100~600RT

2.3 Контроль температуры воды

Вода в резервуаре охлаждается посредством чиллера с водяным охлаждением. Температура в резервуаре для воды регулируется холодильной установкой и электронагревателем. С помощью термопары измеряется температура воды в резервуаре, затем это значение передается в ПИД-регулятор. ПИД-регулятор подает сигнал 4-20 мА на регулятор мощности в зависимости от заданного значения. Таким образом, регулируется коэффициент выходной мощности электронагревателя, что позволяет обеспечить контроль температуры воды. Температура воды на входе со стороны воды регулируется трехходовым клапаном. ПИД-регулятор определяет температуру воды на входе и передает сигнал 4-20 мА

на трехходовой клапан, регулируя степень открытия трехходового клапана. Таким образом, регулируется соотношение холодной и горячей воды, что позволяет контролировать температуру воды на входе.

2.4 Электропитание


Электропитание лаборатории на входе составляет 380 В/50 Гц. Оно подается на агрегат с помощью программируемого источника питания с регулируемой частотой в соответствии с потребностями агрегата в питании, при этом возможно дистанционное управление для регулировки частоты и напряжения источника питания. Параметры источника питания:

Максимальн ая мощность/к ВА	Выходно е напряже ние/В	Частота/Гц	Фаза	Ток/А	
800	300-520	50-60	3	1000	

2.5 Центр управления

В центре управления предусмотрено размещение трех человек, установлены три рабочих стола, компьютер для проведения испытаний и офисный компьютер. Шкаф управления лабораторией позволяет контролировать и регулировать рабочие режимы, а регулируемый источник питания можно настроить для регулировки

информации о питании.

3. Оборудование

Камера А:

Количест во	Обозначение испытательного оборудования
12	Терморезистор
14	Датчик давления
1	Блок термопар
1	Измеритель мощности

Камера В:

Количест во	Обозначение испытательного оборудования
12	Терморезистор
14	Датчик давления
1	Блок термопар
1	Измеритель мощности

Общее оборудование:

Количест во	Обозначение испытательного оборудования
1	Стабилизированный источник
	питания
6	Терморезистор
6	Электромагнитный расходомер

4. Допуск на проведение испытаний

Справочные стандарты на проведение испытаний

GB/T 18430.1-2007 «Установки водяного охлаждения (тепловые насосы), использующие парокомпрессионный цикл — Часть 1: Установки водяного охлаждения (тепловые насосы) для промышленного, коммерческого и аналогичного применения»

GB/T 10870-2014 «Методы проверки эффективности парокомпрессионного чиллера (теплового насоса)»

GB/T 19409-2013 «Тепловые насосы с водой в качестве источника тепла низкого потенциала (тепловые насосы с использованием геотермальной энергии)»

АНКІ 550/590-2015 «Оценка производительности водоохлаждающих и водонагревательных установок с тепловым насосом, использующих парокомпрессионный цикл»

В соответствии с вышеуказанными стандартами измеряются основные физические величины, такие как температура, влажность, давление, расход, напряжение, ток и мощность соответственно, после чего по следующим формулам рассчитываются соответствующие значения холодопроизводительности, теплопроизводительности и падения напряжения.

Погрешность расчета:

Расчетное значение	Погрешность	Единица измерен ия
Холодопроизво дительность	±2%	/
Теплопроизвод ительность	±2%	/
Перепад давления	±0,5	кПа

Количественная погрешность при проведении испытаний:

Расчетное значение	Погрешность	Едини ца измере ния
Вода		
Температура	±0,1	°C
Расход воды	±1%	/
Воздух		
Температура по сухому термометру	±0,2	°C
Температура по влажному термометру	±0,1	°C
Электропитание		
Мощность	±1,0%	Вт
Напряжение	±0,5	В
Ток	±0,5	A

раза в год. Основными калибровочными организациями являются Hefei General Electromechanical Products Testing Institute Co., Ltd., Нанкинский институт метрологического контроля и испытаний и др.

Отчеты о калибровке в бумажном виде хранятся в испытательном центре.

5. Объем услуг по проведению испытаний

Лаборатория для чиллеров с воздушным охлаждением (тепловых насосов) 600RT позволяет проводить оценку производительности и надежности изделий для систем кондиционирования, при это расчет производится в часах. Основные модели, подходящие для проведения испытаний:

- 1) Чиллер с воздушным охлаждением (тепловой насос);
- 2) Установка косвенного испарительного охлаждения;
- 3) Чиллер с водяным охлаждением с компрессорами на магнитных подшипниках;
- 4) Чиллер с водяным охлаждением (тепловой насос).

6. Приложение (пример выполнения оценки)

Идентификатор отчета = JL/B016-

Протокол испытаний

Наименование изделия:	
Модель изделия:	
Производитель:	
Заказчик:	

Испытательный центр компании Nanjing TICA Climate Solutions Co.ltd.

Идентификатор отчета = JL/B016- Страница 2 из 8

Предостережение

- 1. В протоколе отсутствует «Специальная печать для протокола испытаний», или официальная печать испытательного подразделения недействительна.
- Копии протоколов без «Специальной печати для протокола испытаний» или «Официальной печати испытательного подразделения» являются недействительными. Воспроизведение любой части данного протокола без письменного согласия заказчика не допускается.
- 3. Протокол не имеет юридической силы без подписей главного инспектора, проверяющего лица и утверждающего лица, его необходимо заверить рельефной печатью.
- 4. При внесении изменений протокол считается недействительным.
- 5. При возникновении каких-либо замечаний к протоколу испытаний необходимо предоставить их в испытательное подразделение в течение 15 дней с момента получения протокола. Замечания, представленные позднее указанного срока, к рассмотрению не принимаются.
- 6. Уполномоченный по испытаниям орган несет ответственность только за поступившие образцы.

Страница 3 из 8

Общая информация

Наименование излелия		Модель	
Заказчик		Марка	
Тип испытания		Количество	
Изготовитель		Дата поставки образцов	
Дата проведения испытаний		Серийный номер образца	
Стандарт на проведение			
Испытываемый параметр			
Результат испытания	После испытания: Результаты испытани ***.		ствуют требованиям*** та выпуска: nmental Technology Co. Ltd. Испытательный центр
Примечание			

Проверил:	Рассмотрел:	Утвердил:
HIDODCDHJI.	i accidio i pesi.	у і вердилі.

Страница 4 из 8

Данные испытаний

№	Параметр	ца	Номиналь ные	Стандарт испытания	Данные испытаний	Результа ты
1		измер	данные			
2						
3						
4						
	(далее пусто)					

«/» означает пропущено. «-» означает неприменимо.

Страница 5 из 8

Сводная информация по контрольно-измерительным приборам

No	Наименование оборудования Модель		Серийный №	Точность	Диапазон	Срок дейст вия	Это использо вание (V)
1	DB1 в камеру А	Pt100	TJWD-001	Класс А	(-30-60) °C		
2	DB RTD1 в камеру A	Pt100	115012615	Класс А	(-30-60) °C		
3	WB1 в камеру А	Pt100	TJWD-002	Класс А	-0-60 °C		
4	WB RTD1 в камеру А	Pt100	115012612	Класс А	-0-60 °C		
5	DB2 в камеру А	Pt100	TS-0243C0 423	Класс А	(-30-63) м		
6	WB2 в камеру А	Pt100	TS-3243C0 424	Класс А	-0-60 °C		
7	DB3 в камеру А	Pt100	115012606	Класс А	(-30-60) °C		
8	DB RTD3 в камеру A	Pt100	115012616	Класс А	(-30-60) °C		
5	WB3 в камеру А	Pt100	115012615	Класс А	-0-60 °C		
10	WB RTD3 в камеру А	Pt100	115012608	Класс А	-0-60 °C		
11	DB4 в камеру А	Pt100	TS-0243C0 425	Класс А	(-30-60) °C		
12	WB4 в камеру А	Pt100	TS-0243C0 426	Класс А	-0-60 °C		
13	DB5 в камеру В	Pt100	TS-0243C0 421	Класс А	(-30-60) °C		
14	WB5 в камеру В	Pt100	TS-0243C0 422	Класс А	-0-60 °C		
15	DB6 в камеру В	Pt100	TJWD-003	Класс А	(-30-60) °C		
16	DB RTD6 в камеру В	Pt100	TJWD-004	Класс А	(-30-60) °C		
17	WB6 в камеру В	Pt100	116012137	Класс А	-0-60 °C		
18	WB RTD6 в камеру В	Pt100	116012136	Класс А	-0-60 °C		
19	DB7 в помещение В	Pt100	TS-0243C0 427	Класс А	(-30-60) °C		
20	WB7 в камеру В	Pt100	TS-0243C0 428	Класс А	-0-60 °C		
21	DB8 в помещение В	Pt100	115012611	Класс А	(-30-60) °C		

Страница 6 из 8

22	DB RTD8 в камеру В	Pt100	115012614	Класс А	(-30-60) °C	
23	WB8 в камеру В	Pt100	115012607	Класс А	-0-60 °C	
24	WB RTD8 в камеру В	Pt100	115012618	Класс А	-0-60 °C	
25	Температура воды на входе1	Pt100	7292F	Класс А	-0-60 °C	
26	Температура воды на выходе1	Pt100	7290F	Класс А	-0-60 °C	
27	Температура воды на выходе1	Pt100	7291F	Класс А	-0-60 °C	
28	Температура воды на входе1	Pt100	7293F	Класс А	-0-60 °C	
29	Температура гликоля на входе	Pt100	15052607	Класс А	(-30-60) °C	
30	Температура гликоля на выходе	Pt100	15052609	Класс А	(-30-60) °C	
31	Анализатор мощности 1	WT230	91L238246	Класс 0.2	0-990 KBT	
32	Анализатор мощности 2	WT333E	C3TJ08009 E	Класс 0.2	0-990 KBT	
33	Расход охлажденной воды 1	AXF125G	S5L302244	Класс 0.2	25-253 м ³ /ч	
34	Расход охлажденной воды 2	AXF125G	S5T909935	Класс 0.2	25-253 м³/ч	
3	Расход охлажденной воды 3	SE11EAFT 1FED10A1 T01K000	2024013103 56	Класс 0.2	40-400 м³/ч	
36	Расход охлажденной воды 4	SE11EAFT 1FED10A1 T01K000	2024013100 57	Класс 0.2	40-400 м³/ч	
37	Рекуперация тепла - Расход воды	AXF125G	S5L302246	Класс 0.2	30-300 м ³ /ч	
38	Расход гликоля	AXF100G	S5R605015	Класс 0.2	20-200 м ³ /ч	
39	Перепад давления охлажденной воды	EJA110	S4L1C1657 8	Класс 0.2	(0-250) кПа	
40	Перепад давления воды при рекуперации тепла	EJA110	S4L1C1657 4	Класс 0.2	(0-250) кПа	
41	Барометрическое давление 1	MPM480	26526	Класс 0.2	(80-130) кПа	

Страница 7 из 8

42	Барометрическое давление 2	PTX 7517	3253302	Класс 0.2	(80-120) кПа	
43	Относительная влажность 1	HMT110	G4020061	±2%	(0-100)%	
44	Относительная влажность 2	HMT110	L5010198	±2%	(0-100)%	
	(далее пусто)					

Страница 8 из 8

Примеры фотографий агрегата

Паспор тная таблич ка	
Фото агрегат а	

4008-601-601

NANJING TICA CLIMATE SOLUTIONS CO., LTD. $210046\,$

www.tica.com

